コンテンツにスキップ

Python 機械学習ライブラリ LightGBM

Topic

LightGBM (Light Gradient Boosting Machine) について

Overview

決定木をGradient Boosting (勾配ブースティング)によりアンサンブル学習したもの

  • 機械学習におけるツリーベースの分析アルゴリズム
  • 「教師あり学習」によるデータ分析
  • 目的変数に応じて説明変数を予測する「分類」(y=0 or 1)

Boostingとは、複数の決定木を作ることで予測精度を高める手法のこと

LightGBM

source

Install

pip install lightgbm

Usage

# %%
import lightgbm as lgb
import pandas as pd
import numpy as np
# %%
# scikit-learnからデータ読み込み
from sklearn.datasets import load_wine
data = load_wine()
data
# %%
# Xは特徴量、Yは推論したい値(ターゲット)
X = pd.DataFrame(data['data'], columns=data['feature_names'])
Y = pd.DataFrame(data['target'], columns=['target'])
features = data['feature_names']
# %%
X
# %%
Y
# %%
X.describe()
# %%
# https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
# データ全体を、学習に使う訓練用データと検証用データに分割する
from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0)
X_train, X_valid, Y_train, Y_valid = train_test_split(X_train, Y_train, test_size=0.2, random_state=0)
len(X_train), len(X_valid), len(X_test)
# %%
train = lgb.Dataset(X_train, label=Y_train)
valid = lgb.Dataset(X_valid, label=Y_valid)
# %%
# パラメーターを設定
params = {
    'boosting_type': 'gbdt',
    'objective': 'multiclass', # 多クラス分類
    'metric': 'multi_logloss',
    'num_class': 3, # 何クラスに分割するか
    'num_iterations': 500, # 決定木の数
    'learning_rate': 0.1
}
# %%
# モデルの学習
model = lgb.train(
    params,
    train,
    num_boost_round=1000,
    early_stopping_rounds=30,
    valid_sets=[train, valid],
    feature_name=features,
    verbose_eval=10
)
# %%
# テストデータを用いて、学習済みモデルによる推論を行う
Y_pred = model.predict(X_test, num_iteration=model.best_iteration)
Y_pred
# %%
# argmaxは、配列の一番大きい値を返す
preds = np.argmax(Y_pred, axis=1)
preds
# %%
# 正解率を確認(推論結果とラベルが同じところをtrueとして合計をとったものを総数で割る)
accuracy = sum(Y_test['target']==preds) / len(Y_test)
accuracy # 0.9166666666666666 => 91%の正解率

LightGBM の出力結果

[LightGBM] [Info] Number of positive: 1458, number of negative: 1389
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 0.014959 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 17651
[LightGBM] [Info] Number of data points in the train set: 2847, number of used features: 74
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.512118 -> initscore=0.048482
[LightGBM] [Info] Start training from score 0.048482
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
Training until validation scores don't improve for 10 rounds
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
Early stopping, best iteration is:
[86]    training's binary_logloss: 0.0135884    valid_1's binary_logloss: 0.0708282
Accuracy: 0.9789325842696629

Gist

Reference